新知一下
海量新知
6 6 7 6 2 8 2

超全,Python 量化金融库汇总!

小詹学Python | 左手Python,右手AI。 2022/11/15 22:19

来源: 网络

本文汇总了定量金融的大量三方库,按功能进行分类,覆盖数值运算,衍生品定价,回溯检验,风险管理,数据爬取,可视化等多个子领域,供每个Python程序员参考。

不要重复造轮子,明确要解决的问题,然后寻找相应的工具。很多著名的包如Numpy,Pandas,Seaborn,backtrader等已经被证明高度有效,即便没有找到符合应用场景的包,类似的工具也能够为创建自己的解决方案提供参考。

内容来源于Github项目《Awesome Quant》,由Wilson Freitas创作 ,项目链接: Awesome Quant

[1]

科学运算和数据结构

  • numpy

    [2]

     - 进行数值运算的基础包,scipy和numpy令Python进行有效的矩阵运算成为可能

  • scipy

    [3]

     - 科学计算生态系统,广泛应用于数学,物理学和工程学等自然科学领域

  • pandas

    [4]

     - 提供了高性能的数据结构和数据分析工具

  • quantdsl

    [5]

     - 金融/交易领域进行定量分析的领域特定语言

  • statistics

    [6]

     - 进行基础统计运算

  • sympy

    [7]

     - 专门用于符号数学

  • pymc3

    [8]

     - 用Python实现概率编程,贝叶斯建模,用Theano实现概率机器学习

金融工具和定价

  • PyQL

    [9]

     - Quantlib的Python接口

  • pyfin

    [10]

     - 期权定价

  • vollib

    [11]

     - 计算期权价格,隐含波动率和希腊值

  • QuantPy

    [12]

     - 定量金融分析

  • Finance-Python

    [13]

     - 定量金融分析

  • ffn

    [14]

     - 拓展Pandas,提供一系列函数进行基础的量化分析

  • pynance

    [15]

     - 获取股票和衍生品市场的数据,分析和可视化

  • hasura/base-python-dash

    [16]

     - 快速入门部署Dash应用,Dash基于Flask,Plotly.js和React.js,允许用户用纯Python快速搭建强大的数据科学网页App

  • hasura/base-python-bokeh

    [17]

     - 如何用Bokeh实现数据可视化

  • pysabr

    [18]

     - 用Python实现SABR模型

技术指标

  • pandas_talib

    [19]

     - 整合Pandas和Talib,用pandas计算技术指标

  • finta

    [20]

     - 用Pandas计算常见的技术指标

  • Tulipy

    [21]

     - 技术指标库(tulipindicators的Python绑定)

量化交易/回溯检验

  • TA-Lib

    [22]

     - 计算技术指标,跟Numpy深度整合

  • trade

    [23]

     - 用于开发金融应用的基础包

  • zipline

    [24]

     - 强大的回溯检验框架,被很多量化交易平台作为底层技术,包括Qauntopian, 聚宽等

  • QuantSoftware Toolkit

    [25]

     - 创建和管理投资组合

  • quantitative

    [26]

     - 定量金融的基础工具,回溯检验

  • analyzer

    [27]

     - 接收实时报价并回溯检验

  • bt

    [28]

     - 回溯检验框架,比Zipline更灵活

  • backtrader

    [29]

     - 回溯检验框架,支持实盘交易,过去几年快速崛起,已成为最流行的量化工具之一

  • pythalesians

    [30]

     - 回溯检验框架

  • pybacktest

    [31]

     - 向量化回溯检验框架,向量化允许进行快速的回溯,但检验精度不高

  • pyalgotrade

    [32]

     - 回溯检验框架

  • tradingWithPython

    [33]

     - 提供一系列函数和自定义类来管理量化交易

  • Pandas TA

    [34]

     - 拓展Pandas,包含115种技术指标,快速创建交易策略

  • ta

    [35]

     - 用Pandas计算技术指标

  • algobroker

    [36]

     - 算法交易的部署引擎

  • pysentosa

    [37]

     - sentosa交易系统的Python接口

  • finmarketpy

    [38]

     - 分析市场数据,支持简单回溯检验

  • binary-martingale

    [39]

     - 自动化交易程序,用马丁格尔策略交易二元期权

  • fooltrader

    [40]

     - 利用大数据技术进行量化分析,包含回溯检验

  • zvt

    [41]

     - 提供统一和灵活的方式来获取数据,计算因子,选股,回溯检验和实盘交易

  • pylivetrader

    [42]

     - 兼容zipline的实时交易库

  • pipeline-live

    [43]

     - zipline扩展库,用于实盘交易

  • zipline-extensions

    [44]

     - Zipline扩展,适配QuantRocket

  • moonshot

    [45]

     - 向量化回溯检验和交易引擎

  • PyPortfolioOpt

    [46]

     - 金融投资组合优化,包括创建有效边界和其它高级算法

  • riskparity.py

    [47]

     - 用TensorFlow设计风险平价投资组合

  • mlfinlab

    [48]

     - 《金融机器学习应用》一书的实现

  • pyqstrat

    [49]

     - 快速地回测交易策略

  • pinkfish

    [50]

     - 证券分析

  • aat

    [51]

     - 异步算法交易引擎

  • Backtesting.py

    [52]

     - 回溯检验框架

  • catalyst

    [53]

     - 回溯检验框架,专门用于数字货币市场

  • quantstats

    [54]

     - 投资组合分析

  • qtpylib

    [55]

     - 回溯检验框架,支持实盘交易

  • freqtrade

    [56]

     - 开源数字货币交易机器人

  • algorithmic-trading-with-python

    [57]

     - 《Python算法交易》一书的源码和数据

  • DeepDow

    [58]

     - 用深度学习优化投资组合

风险分析

  • pyfolio

    [59]

     - 计算投资组合和交易策略的业绩指标

  • empyrical

    [60]

     - 计算常用的风险和业绩指标

  • fecon235

    [61]

     - 金融计量经济工具包,包括leptokurtotic风险高斯混合模型,自适应Boltzmann投资组合

  • finance

    [62]

     - 计算金融风险

  • qfrm

    [63]

     - 定量金融风险管理

  • visualize-wealth

    [64]

     - 构建投资组合和定量分析

  • VisualPortfolio

    [65]

     - 可视化投资组合表现

因子分析

  • alphalens

    [66]

     - 分析预测性因子的表现

时间序列

  • ARCH

    [67]

     - Python实现ARCH模型

  • statsmodels

    [68]

     - 计量经济模型库,用于创建回归模型,统计检验,时序模型

  • dynts

    [69]

     - 操纵和分析时间序列

  • PyFlux

    [70]

     - 时间序列模型和因果推断

  • tsfresh

    [71]

     - 从时间序列中提取有意义的特征

  • hasura/quandl-metabase

    [72]

     - 可视化Quandl的时间序列数据集

日历

  • trading_calendars

    [73]

     - 股票交易所财经日历

  • bizdays

    [74]

     - 工作日计算和效用工具

  • pandas_market_calendars

    [75]

     - 拓展Pandas,股票交易所财经日历

数据源

  • findatapy

    [76]

     - 获取彭博终端,Quandl和雅虎财经的数据

  • googlefinance

    [77]

     - 从谷歌财经获取实时股票价格

  • yahoo-finance

    [78]

     - 从雅虎财经下载股票报价,历史价格,产品信息和财务报表

  • pandas-datareader

    [79]

     - 从多个数据源获取经济/金融时间序列,包括谷歌财经,雅虎财经,圣路易斯联储(FRED),OECD, Fama/French,世界银行,欧元区统计局等,是Pandas生态系统的重要组成

  • pandas-finance

    [80]

     - 提供高级接口下载和分析金融时间序列

  • pyhoofinance

    [81]

     - 从雅虎财经批量获取股票数据

  • yfinanceapi

    [82]

     - 从雅虎财经获取数据

  • yql-finance

    [83]

     - 从雅虎财经获取数据

  • ystockquote

    [84]

     - 从雅虎财经获取实时报价

  • wallstreet

    [85]

     - 实时股票和期权报价

  • stock_extractor

    [86]

     - 从网络上爬取股票信息

  • Stockex

    [87]

     - 从雅虎财经获取数据

  • finsymbols

    [88]

     - 获取全美证券交易所,纽约证券交易所和纳斯达克上市公司的详细数据

  • inquisitor

    [89]

     - 从Econdb获取经济数据,Econdb是全球经济指标聚合器

  • chinesestockapi

    [90]

     - 获取A股数据

  • exchange

    [91]

     - 获取最新的汇率报价

  • ticks

    [92]

     - 命令行程序,获取股票报价

  • pybbg

    [93]

     - 彭博终端COM的Python接口

  • ccy

    [94]

     - 获取外汇数据

  • tushare

    [95]

     - 获取中国股票,基金,债券和期货市场的历史数据

  • jsm

    [96]

     - 获取日本股票市场的历史数据

  • cn_stock_src

    [97]

     - 从不同数据源获取中国的股票数据

  • coinmarketcap

    [98]

     - 从coinmarketcap获取数字货币数据

  • after-hours

    [99]

     - 获取美股盘前和盘后的市场价格

  • bronto-python

    [100]

     - 整合Bronto API接

  • pytdx

    [101]

     - 获取中国国内股票的实时报价

  • pdblp

    [102]

     - 整合Pandas和彭博终端的公共接口

  • tiingo

    [103]

     - 从Tiingo平台获取股票日K线和实时报价/新闻流

  • IEX

    [104]

     - 从IEX交易所获取股票的实时报价和历史数据

  • alpaca-trade-api

    [105]

     - 从Alpaca平台获取股票实时报价和历史数据,并提供交易接口交易美股

  • metatrader5

    [106]

     - 集成Python和MQL5交易平台,适合外汇交易

  • akshare

    [107]

     - 获取中国股票,基金,债券和宏观经济数据

  • yahooquery

    [108]

     - 从雅虎财经获取数据

  • investpy

    [109]

     - 从英为财经(Investing.com)获取数据

  • yliveticker

    [110]

     - 从雅虎财经通过Websocket获取实时报价

Excel集成

  • xlwings

    [111]

     - 深度整合Python和Excel

  • openpyxl

    [112]

     - 读取/写入Excel 2007 xlsx/xlsm文件

  • xlrd

    [113]

     - 从Excel电子表格提取数据

  • xlsxwriter

    [114]

     - 将数据写入Excel电子表格

  • xlwt

    [115]

     - 创建跨平台和向后兼容的电子表格

  • DataNitro

    [116]

     - 深度整合Python和Excel,可免费试用,商业付费软件

  • xlloop

    [117]

     - 创建Excel用户自定义函数

  • expy

    [118]

     - Excel插件,允许用户从电子表格中执行Python代码和定义自定义函数

  • pyxll

    [119]

     - Excel插件,从Excel中执行Python代码

可视化

  • Matplotlib

    [120]

     - Python数据可视化的基础包,从二维图表到三维图表

  • Seaborn

    [121]

     - 基于Matplotlib,快速创建美观的统计图表

  • Plotly

    [122]

     - 创建动态和交互式的图表

  • Altair

    [123]

     - 统计可视化工具,同时支持静态和交互式图表

  • D-Tale

    [124]

     - 可视化Pandas数据结构。

地址链接

[1]

Awesome Quant: https//github.com/wilsonfreitas/awesome-quant

[2]

numpy: https//www.numpy.org/

[3]

scipy: https//www.scipy.org/

[4]

pandas: https//pandas.pydata.org/

[5]

quantdsl: https//github.com/johnbywater/quantdsl

[6]

statistics: https//docs.python.org/3/library/statistics.html

[7]

sympy: https//www.sympy.org/

[8]

pymc3: https//docs.pymc.io/

[9]

PyQL: https//github.com/enthought/pyql

[10]

pyfin: https//github.com/opendoor-labs/pyfin

[11]

vollib: https//github.com/vollib/vollib

[12]

QuantPy: https//github.com/jsmidt/QuantPy

[13]

Finance-Python: https//github.com/alpha-miner/Finance-Python

[14]

ffn: https//github.com/pmorissette/ffn

[15]

pynance: https//pynance.net/

[16]

hasura/base-python-dash: https//platform.hasura.io/hub/projects/hasura/base-python-dash

[17]

hasura/base-python-bokeh: https//platform.hasura.io/hub/projects/hasura/base-python-bokeh

[18]

pysabr: https//github.com/ynouri/pysabr

[19]

pandas_talib: https//github.com/femtotrader/pandas_talib

[20]

finta: https//github.com/peerchemist/finta

[21]

Tulipy: https//github.com/cirla/tulipy

[22]

TA-Lib: https//ta-lib.org/

[23]

trade: https//github.com/rochars/trade

[24]

zipline: https//www.zipline.io/

[25]

QuantSoftware Toolkit: https//github.com/QuantSoftware/QuantSoftwareToolkit

[26]

quantitative: https//github.com/jeffrey-liang/quantitative

[27]

analyzer: https//github.com/llazzaro/analyzer

[28]

bt: https//github.com/pmorissette/bt

[29]

backtrader: https//github.com/backtrader/backtrader

[30]

pythalesians: https//github.com/thalesians/pythalesians

[31]

pybacktest: https//github.com/ematvey/pybacktest

[32]

pyalgotrade: https//github.com/gbeced/pyalgotrade

[33]

tradingWithPython: https//pypi.org/project/tradingWithPython/

[34]

Pandas TA: https//github.com/twopirllc/pandas-ta

[35]

ta: https//github.com/bukosabino/ta

[36]

algobroker: https//github.com/joequant/algobroker

[37]

pysentosa: https//pypi.org/project/pysentosa/

[38]

finmarketpy: https//github.com/cuemacro/finmarketpy

[39]

binary-martingale: https//github.com/metaperl/binary-martingale

[40]

fooltrader: https//github.com/foolcage/fooltrader

[41]

zvt: https//github.com/zvtvz/zvt

[42]

pylivetrader: https//github.com/alpacahq/pylivetrader

[43]

pipeline-live: https//github.com/alpacahq/pipeline-live

[44]

zipline-extensions: https//github.com/quantrocket-llc/zipline-extensions

[45]

moonshot: https//github.com/quantrocket-llc/moonshot

[46]

PyPortfolioOpt: https//github.com/robertmartin8/PyPortfolioOpt

[47]

riskparity.py: https//github.com/dppalomar/riskparity.py

[48]

mlfinlab: https//github.com/hudson-and-thames/mlfinlab

[49]

pyqstrat: https//github.com/abbass2/pyqstrat

[50]

pinkfish: https//github.com/fja05680/pinkfish

[51]

aat: https//github.com/timkpaine/aat

[52]

Backtesting.py: https//kernc.github.io/backtesting.py/

[53]

catalyst: https//github.com/enigmampc/catalyst

[54]

quantstats: https//github.com/ranaroussi/quantstats

[55]

qtpylib: https//github.com/ranaroussi/qtpylib

[56]

freqtrade: https//github.com/freqtrade/freqtrade

[57]

algorithmic-trading-with-python: https//github.com/chrisconlan/algorithmic-trading-with-python

[58]

DeepDow: https//github.com/jankrepl/deepdow

[59]

pyfolio: https//github.com/quantopian/pyfolio

[60]

empyrical: https//github.com/quantopian/empyrical

[61]

fecon235: https//github.com/rsvp/fecon235

[62]

finance: https//pypi.org/project/finance/

[63]

qfrm: https//pypi.org/project/qfrm/

[64]

visualize-wealth: https//github.com/benjaminmgross/visualize-wealth

[65]

VisualPortfolio: https//github.com/wegamekinglc/VisualPortfolio

[66]

alphalens: https//github.com/quantopian/alphalens

[67]

ARCH: https//github.com/bashtage/arch

[68]

statsmodels: https://link.zhihu.com/?target=http%3A//statsmodels.sourceforge.net/

[69]

dynts: https//github.com/quantmind/dynts

[70]

PyFlux: https//github.com/RJT1990/pyflux

[71]

tsfresh: https//github.com/blue-yonder/tsfresh

[72]

hasura/quandl-metabase: https//platform.hasura.io/hub/projects/anirudhm/quandl-metabase-time-series

[73]

trading_calendars: https//github.com/quantopian/trading_calendars

[74]

bizdays: https//github.com/wilsonfreitas/python-bizdays

[75]

pandas_market_calendars: https//github.com/rsheftel/pandas_market_calendars

[76]

findatapy: https//github.com/cuemacro/findatapy

[77]

googlefinance: https//github.com/hongtaocai/googlefinance

[78]

yahoo-finance: https//github.com/lukaszbanasiak/yahoo-finance

[79]

pandas-datareader: https//github.com/pydata/pandas-datareader

[80]

pandas-finance: https//github.com/davidastephens/pandas-finance

[81]

pyhoofinance: https//github.com/innes213/pyhoofinance

[82]

yfinanceapi: https//github.com/Karthik005/yfinanceapi

[83]

yql-finance: https//github.com/slawek87/yql-finance

[84]

ystockquote: https//github.com/cgoldberg/ystockquote

[85]

wallstreet: https//github.com/mcdallas/wallstreet

[86]

stock_extractor: https//github.com/ZachLiuGIS/stock_extractor

[87]

Stockex: https//github.com/cttn/Stockex

[88]

finsymbols: https//github.com/skillachie/finsymbols

[89]

inquisitor: https//github.com/econdb/inquisitor

[90]

chinesestockapi: https//pypi.org/project/chinesestockapi/

[91]

exchange: https//github.com/akarat/exchange

[92]

ticks: https//github.com/jamescnowell/ticks

[93]

pybbg: https//github.com/bpsmith/pybbg

[94]

ccy: https//github.com/lsbardel/ccy

[95]

tushare: https//pypi.org/project/tushare/

[96]

jsm: https//pypi.org/project/jsm/

[97]

cn_stock_src: https//github.com/jealous/cn_stock_src

[98]

coinmarketcap: https//github.com/barnumbirr/coinmarketcap

[99]

after-hours: https//github.com/datawrestler/after-hours

[100]

bronto-python: https//pypi.org/project/bronto-python/

[101]

pytdx: https//github.com/rainx/pytdx

[102]

pdblp: https//github.com/matthewgilbert/pdblp

[103]

tiingo: https//github.com/hydrosquall/tiingo-python

[104]

IEX: https//github.com/addisonlynch/iexfinance

[105]

alpaca-trade-api: https//github.com/alpacahq/alpaca-trade-api-python

[106]

metatrader5: https//pypi.org/project/MetaTrader5/

[107]

akshare: https//github.com/jindaxiang/akshare

[108]

yahooquery: https//github.com/dpguthrie/yahooquery

[109]

investpy: https//github.com/alvarobartt/investpy

[110]

yliveticker: https//github.com/yahoofinancelive/yliveticker

[111]

xlwings: https//www.xlwings.org/

[112]

openpyxl: https//openpyxl.readthedocs.io/en/latest/

[113]

xlrd: https//github.com/python-excel/xlrd

[114]

xlsxwriter: https//xlsxwriter.readthedocs.io/

[115]

xlwt: https//github.com/python-excel/xlwt

[116]

DataNitro: https//datanitro.com/

[117]

xlloop: https://link.zhihu.com/?target=http%3A//xlloop.sourceforge.net/

[118]

expy: https://link.zhihu.com/?target=http%3A//www.bnikolic.co.uk/expy/expy.html

[119]

pyxll: https//www.pyxll.com/

[120]

Matplotlib: https//matplotlib.org/tutorials/index.html

[121]

Seaborn: https//seaborn.pydata.org/

[122]

Plotly: https//plotly.com/python/

[123]

Altair: https//altair-viz.github.io/index.html

[124]

D-Tale: https//github.com/man-group/dtale

来源:网络


更多“Python”相关内容

更多“Python”相关内容

新知精选

更多新知精选