新知一下
海量新知
6 6 1 5 0 1 4

多亏学了这个python库,一晚上端掉了一个传销团伙。。。

Python绿色通道 | 学Python最好的地方 2022/09/30 15:32

 文 |  乌鸦

来源:Python 技术  

“这是从他们窝点电脑里导出的一份数据,你先看看能不能找出什么端倪,我再去找几个人问问话。”

王队丢给我一个u盘,拿起饭盒胡乱塞了几口饭,便拎起帽子快步走出了办公室。

新知达人, 多亏学了这个python库,一晚上端掉了一个传销团伙。。。

今晚我们根据情报,前往一处传销窝点实施了抓捕行动,带回来了十几个人。

但现场没有发现什么重要证据,抓到的几个人也都缄口不言,现在没法知道他们是否还有其他的窝点,也不知道他们的上线是谁人在哪里,行动一时陷入了僵局。

而此时我手中的这份文件,可能会成为破局的关键。

新知达人, 多亏学了这个python库,一晚上端掉了一个传销团伙。。。

我开始观察起这份人员名单:

invite_id

字段是不重复的,应该和人名是一对一的关系;而

invited_id

重复的很多,而且基本都是在

invite_id

出现过的数据。

所以我们基本可以推断出,这是一份记录传销组织上下线关系的名单。数据足有数百条之多,可见这是一个不小的犯罪组织。

新知达人, 多亏学了这个python库,一晚上端掉了一个传销团伙。。。

不到一个小时的功夫,王队回来了。

“没用,还是死鸭子嘴硬。”王队一屁股坐在椅子上,看了一眼时间,已经快到十二点了。“那份数据看的怎么样了,有没有找到什么线索?”

“这是一个很大的组织,总成员数有好几百,我们现在可能只抓到了冰山一角啊。”

“你说的没错,但正因如此,我们现在必须抓紧时间。”王队走到我的工位前,“我们现在的任务是先找到他们的上线,擒贼先擒王。但今晚抓到的这群人都审不出东西来,虽然能确定他们的身份,暂时也还是确定不了他们之间的关系啊。”

“你说他们之间的关系?”我突然想起前段时间看到的

networkx

这个python库,这次说不定能派上用场。“交给我了,给我五分钟时间。”

首先用pandas导入文件中的数据,并筛选出我们需要的部分:

df = pd.read_excel('./doc/1_evidence.xls')

df = df.loc[:, ['id','name','invite_id','invited_id']]

df.columns = ['id','title','to''from']

然后调用

networkx

库,生成层级关系图并导出:

G = nx.from_pandas_edgelist(df, 'from''to', create_using=nx.DiGraph())

nt = net.Network('960px''1280px', directed=True)

nt.from_nx(G)

nt.show('1_evidence.html')

这样我就得到了这份文件对应的层级关系图,上下线关系瞬间一目了然了:

新知达人, 多亏学了这个python库,一晚上端掉了一个传销团伙。。。

一瞬间王队面露喜色,但立马又恢复了严肃:“你这个是不是有点华而不实啊,虽然看着挺直观,但你能从里面找到谁是这个组织的最上级吗?”

这当然难不倒我,最上级也就是图中网络的根节点,必然是没有其他的点指向它的,所以我们只要遍历所有节点,找到入度为0的点就可以了。

# 找到根节点

top_node = []

for node, degrees in G.in_degree():

    if degrees == 0:

        top_node.append(node)

print('Big Boss:', top_node)

“Big Boss: [100000]” 屏幕上出现了这样的输出。“100000这个编号在表中没有对应的人,但100000下只有一个编号162385的下线,他应该就是这个组织的头头了。”

“不错,要的就是这个!我去让其他同事找这个人的信息,你继续研究数据,把和这个人走的近的人全部找出来!”

这想必也不是难题,既然根节点已经找到了,我们便可以得到所有节点各自所在的层数。

# 设置所有节点级别

l = nx.shortest_path_length(G, 100000)

nx.set_node_attributes(G, l, 'level')

# 计算每级人员数目

data = {}

for node, level in l.items():

    if level in data.keys():

        data[level].append(node)

    else:

        data[level] = [node]

for level, nodes in data.items():

    print(level, len(nodes))

这个组织竟然已经足足发展了36层,想想真是让人直冒冷汗,还好我的同事及时发现了。

然后根据层级给节点标注颜色,方便观察:

# 添加颜色

for node in G.nodes:

    G.nodes[node]['title'] = str(node)

    level = G.nodes[node]['level']

    if level == 0:

        G.nodes[node]['color'] = 'red'

    elif level == 1:

        G.nodes[node]['color'] = 'orange'

    elif level == 2:

        G.nodes[node]['color'] = 'yellow'

新知达人, 多亏学了这个python库,一晚上端掉了一个传销团伙。。。

可以看到这个编号162385的人,自己只有两个下线,而这两个下线每人都各自另外发展了几十个下线,想想还蛮有意思。

“找到了!”王队撞开办公室的门,“那个人找到了,就在今晚逮捕的这群人里面,还有两个他的下线也在里面。他们也都承认了,现在正在重点审。”看来实际情况和我的推测完全相符,多亏了这份名单。

“你今晚立了件大功啊!”王队走过来拍了拍我的肩膀。“不过现在还没完,根据他们的口供,文件里的就是他们组织的全部人员信息了。你现在把他们发展下线最多的几个人给我找出来,我们根据信息,立刻安排定点抓捕行动。”

跟前面的差不多,不过这次我需要遍历所有节点的出度数,然后按倒序排序,取前几项就可以了。

# 给下线前十的目标添加颜色

degrees = G.out_degree()

top_nodes = sorted(degrees, key=lambda x: x[1], reverse=True)[:10]

print(top_nodes)

for node in top_nodes:

    G.nodes[node[0]]['color'] = 'green'

然后给目标节点加上颜色,方便观察,最终得到了这样的关系图:

新知达人, 多亏学了这个python库,一晚上端掉了一个传销团伙。。。

“干得不错,只要再把这几个人抓到,就相当于切断了这个组织的大动脉,后面的慢慢收尾就可以了。”王队把文件合上,笑着对我说。“没想到你还有这本事,真是后生可畏啊!”

“今天抓到的那三条大鱼,现在审出什么结果了?”相对于其他,我还是对案情本身更感兴趣。

“别提了,都快笑死我了。这仨人看见证据直接慌了神,开始互相推卸责任,老大说同伙全是另外两个人拉来的他都没参与,另外俩人说骗局全是老大策划的他们就是手下打工的,现在估计还吵着呢...”

(本文背景情节数据均为虚构,如有雷同纯属巧合) 

更多“python”相关内容

更多“python”相关内容

新知精选

更多新知精选