新知一下
海量新知
5 9 7 0 4 4 3

一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

编程教室 | 每天5分钟,轻松学编程 2021/11/26 15:05

说到目标检测,那可谓当前的自动驾驶、新零售、智慧工业等热门行业中的 关键技术之一 目标检测不仅在 行人、车辆、商品以及火灾检测 等任务中发挥着极其关键的价值,在 目标跟踪、姿态识别、手势控制、图像搜索 等复合任务中也至关重要。

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

注*:以上视频引用于公开数据集[1]

图1 PaddleDetection产业应用效果示例

而在当前端侧智能、端云协同的行业发展趋势下,算法在移动端的部署应用则显得尤其重要。相较于统一的中心化处理, 智能终端可以更好的适应差异化的环境,运维成本也更低 。然而开发一个高质量的轻量目标检测模型却并不那么容易,现实环境中往往存在诸多挑战:

  1. 度要 快。 比如工业视觉质量检测、自动驾驶等实时场景,延迟可以接受的范围往往需要在毫秒级别,要求极其严苛。

  2. 精度要高。 在自动驾驶、火灾检测等场景,一个微小的错误都可能带来严重的损失,对误检、漏检的容忍度非常低。

  3. 体积要小。 在手机端、车载、IOT等边缘端部署,算力和内存都有限,算法需要做到极致压缩。

  4. 部署环境复杂多样。 硬件设备功耗、规格各色各样。适配和部署成本简直不要太大!

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

莫急,今天隆重“出道”的 目标检测新星--PP-PicoDet 绝对称得上是解决以上困局的“一计良策”!

话不多说,直接奉上开源代码实现:

https://github.com/PaddlePaddle/PaddleDetection

强烈建议各位 Star收藏 ,深入研究使用。

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

其系列中的PP-PicoDet-S参数量仅有 0.99M ,却有 30.6%mAP 的精度,当输入尺寸为320时, 推理速度甚至可达150FPS ,不仅 mAP比YOLOX-Nano高4.8% 端侧 推理速度还提升了 55% 相比NanoDet,mAP也高出了7.1%。

而PP-PicoDet-L则在 仅有3.3M 参数量的情况下 mAP 达到 40.9% 比YOLOv5s高3.7%, 推理速度提升 44%。

PP-PicoDet技术报告地址:

https://arxiv.org/abs/2111.00902

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

注*:以上图片引用于报告[2]

图2 PP-PicoDet性能对比图

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

注*:GIF中FPS是包含前处理、预测、后处理的端到端耗时,以上视频引用于公开数据集[1]

图3 PP-PicoDet移动端和不同模型效果对比

不仅如此,在此次飞桨目标检测开发套件PaddleDetection v2.3推出的 多目标实时跟踪系统PP-Tracking 超轻量人体关键点模型PP-TinyPose 中, PP-PicoDet也是极其关键的技术模块 。甚至在近日引起业界广泛关注的 通用图像识别系统PP-ShiTu 中,PP-PicoDet也被用作主体检测模块,以超轻量的体积实现了超越服务端大模型的效果!

PP-PicoDet Android APP下载体验指路:

https://paddledet.bj.bcebos.com/deploy/third_engine/PP-PicoDet.apk

(如链接不能正常访问,可复制到浏览器进行下载)

下面,就让我们来一起看看具体都有哪些优化策略,让PP-PicoDet 又小又快又准

更高性能的骨干网络

一个高性能的骨干网络对目标检测模型的性能提升有着至关重要的作用, PP-PicoDet采用了百度自研的超轻量、高精度骨干网络--ESNet(Enhanced ShuffleNet) ,使得整个目标检测模型不仅计算量更小、延迟更低、精度更高,同时还拥有更好的鲁棒性,能够更好地适配多种硬件环境。

ESNet是在ShuffleNetV2的基础上引入了SE模块和GhostNet中的Ghost模块,并新增深度可分离卷积,对不同通道信息进行融合来提升模型精度,同时还使用神经网络搜索(NAS) 搜索更高效的模型结构,进一步提升模型性能,最终得到了在精度、速度全方面提升 的骨干网络。

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

注*:以上图片和数据引用于报告[2]

图4 ESNet & ShuffleNetV2性能对比

更轻量的Neck和Head

在Neck部分,PP-PicoDet提出了CSP-PAN结构,使用1*1的卷积将特征的通道数与BackBone输出的最小通道数进行统一,从而 减少计算量,并保证特征融合性能不受影响 。此外,PP-PicoDet还在CSP-PAN的基础上再下采样一次,添加一个更小的特征尺度来提升大物体的检测效果(见下图P6分支)。

与此同时,PP-PicoDet在Neck和Head部分均采用深度可分离卷积,将3 x 3卷积核增大至5×5,来 增大感受野,还保持了速度不变 。并且PP-PicoDet采用了通道数和Neck一致的“耦合头”,相比于小通道数的“解耦头”有更快的预测速度。

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

注*:以上图片和数据引用于报告[2]

图5 PP-PicoDet整体架构示意图

更精准的采样策略

PP-PicoDet受到YOLOX等优秀算法的启发,使用了更精准的SimOTA采样策略,随训练过程动态变换标签分配方式,通过在目标区域采集高质量的样本来有效加速模型收敛。在此基础上对其中的cost矩阵计算进行改造,使用VFL+GIoU替代原本的CELoss+IoU, 在速度无损的情况下还能有效提升1%的精度。

除此之外,PP-PicoDet还使用了H-Swish激活函数替代Relu;使用Cosine学习率衰减策略;使用Cycle-EMA;加入少量的如Crop、Flip、Multi-Scale等数据增强策略进行更稳定的训练, 使得模型精度再次提升3%。

下面就让我们一起看看以上这一系列优化策略的最终效果,从中可以看到: 无论是精度还是速度,PP-PicoDet都表现卓越!

新知达人, 一个Python实时检测神器,看齐BAT工程师年薪百万不是梦

注*:测试设备为骁龙865,Threads=4,FP16,NCNN(Paddle Lite测试结果为*),以上图片和数据引用于报告[2]

图6 PP-PicoDet在COCO上和其他轻量级检测器性能试验对比

更完备的部署支持

作为真正的产业级开发利器,PaddleDetection通过完备支持飞桨原生推理库Paddle Inference、飞桨 轻量化推理引擎Paddle Lite ,使开发者可以快速在主流服务器、端侧芯片上实现高性能部署。

并且 支持快速导出为ONNX格式 ,使开发者可以通过ONNX生态能力进行更广泛的算法部署应用,可以通过自己熟悉的移动端引擎进行PP-PicoDet的部署和推理。

除此以外,还提供OpenVINO加速部署方案、Android Demo,并且所有流程代码均已开源 ,全方位满足各类硬件环境部署需求,让深度学习落地的最后一公里再无障碍!


这样的一个目标检测开发神器 已经被多家像国家电网、武汉铁路局、宁德时代这样的行业巨头公司所应用 ,真正实现了助力开发者,赋能产业智能化!


更多“算法”相关内容

更多“算法”相关内容

新知精选

更多新知精选