新知一下
海量新知
6 2 9 1 1 1 8

Pandas 概览

飞总聊IT | 互联网百事通 2019/11/26 05:13

呆鸟云:“看了好久 Pandas 代码,先简单了解一下,到底什么是 Pandas 吧,看看它到底能干什么?如果想了解更多 Pandas,请关注 pypandas.cn,查看最新版的 Pandas 中文官档。”

Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为 最强大、最灵活、可以支持任何语言的开源数据分析工具 。经过多年不懈的努力,Pandas 离这个目标已经越来越近了。

Pandas 适用于处理以下类型的数据:

  • 与 SQL 或 Excel 表类似的,含异构列的表格数据。

  • 有序和无序(即非固定频率)的时间序列数据。

  • 带行列标签的矩阵数据,包括同构或异构型数据。

  • 任意其它形式的观测、统计数据集。数据转入 Pandas 数据结构时不必事先标记。

Pandas 的主要数据结构是 Series(一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。对于 R 用户,DataFrame 提供了比 R 语言 data.frame 更丰富的功能。Pandas 基于 NumPy 开发,可以与其它第三方科学计算支持库完美集成。

Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 :

  • 处理浮点与非浮点数据里的 缺失数据 ,表示为

    NaN

  • 大小可变: 插入或删除 DataFrame 等多维对象的列;

  • 自动、显式 数据对齐 :显式地将对象与一组标签对齐,也可以忽略标签,在 Series、DataFrame 计算时自动与数据对齐;

  • 强大、灵活的 分组(group by) 功能: 拆分-应用-组合 数据集,聚合、转换数据;

  • 把 Python 和 NumPy 数据结构里不规则、不同索引的数据 轻松 地转换为 DataFrame 对象;

  • 基于智能标签,对大型数据集进行 切片 花式索引 子集分解 等操作;

  • 直观地 合并(merge) 连接(join) 数据集;

  • 灵活地 重塑(reshape) 透视(pivot) 数据集;

  • 支持结构化标签:即一个刻度支持多个标签;

  • 成熟的 IO 工具:用于读取 文本文件 (CSV 等支持分隔符的文件)、Excel 文件、数据库等来源的数据,利用超快的 HDF5 格式保存 / 加载数据;

  • 时间序列 :支持日期范围生成、频率转换、移动窗口统计、移动窗口线性回归、日期位移等时间序列功能。

这些功能主要是为了解决其它编程语言、科研环境的痛点。数据科学家处理数据一般分为以下几个阶段:数据整理与清洗、数据分析与建模、数据可视化与制表,Pandas 是实现这些数据处理工作的理想工具。

其它说明:

  • Pandas 速度 很快 。Pandas 的很多底层算法都用 Cython 优化过。然而,为了保持通用性,必然要牺牲一些性能,如果专注于某一功能,您完全可以开发出比 pandas 更快的专用工具。

  • Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。

  • Pandas 已广泛应用于金融领域。

数据结构

维数 名称 描述
1 Series 带标签的一维同构数组
2 DataFrame 带标签的,大小可变的,二维异构表格

为什么有多个数据结构?

Pandas 数据结构就像是低维数据的容器。比如,DataFrame 是 Series 的容器,而 Series 则是标量的容器。使用这种方式,可以在容器中以字典的形式插入或删除对象。

此外,通用 API 函数的默认操作要顾及时间序列与截面数据集的方向。多维数组存储二维或三维数据时,编写函数要注意数据集的方向,这对用户来说是一种负担;如果不考虑 C 或 Fortran 中连续性对性能的影响,一般情况下,不同的轴在程序里其实没有什么区别。Pandas 里,轴的概念主要是为了给数据赋予更直观的语义,即用“更恰当”的方式表示数据集的方向。这样做是为了让用户编写数据转换函数时,少费点脑子。

处理 DataFrame 等表格数据时, index (行)或 columns (列)比 axis 0 axis 1 更直观。用这种方式迭代 DataFrame 的列,代码更易读易懂:

for col in df.columns:

series = df[col]

# do something with series

大小可变与数据复制

Pandas 所有数据结构的值都是可变的,但数据结构的大小并非都是可变的,比如,Series 的长度不可改变,但 DataFrame 里就可以插入列。

Pandas 里,绝大多数方法都不改变原始的输入数据,而是复制数据,生成新的对象。一般来说,原始输入数据 不变 更稳妥。

获得支持

发现 Pandas 的问题或有任何建议,请反馈到 Github 问题跟踪器。日常应用问题请在 Stack Overflow 上咨询 Pandas 社区专家。

社区

Pandas 如今由来自全球的同道中人组成的社区提供支持,社区里的每个人都贡献了宝贵的时间和精力,正因如此,才成就了开源 Pandas,在此,我们要感谢所有贡献者。

若您有意为 Pandas 贡献自己的力量,请先阅读贡献指南。

Pandas 是 NumFOCUS 赞助的项目。有了稳定的资金来源,就确保了 Pandas,这一世界级开源项目的成功,为本项目捐款也更有保障。

项目监管

自 2008 年以来,Pandas 沿用的监管流程已正式编纂为项目监管文档。这些文件阐明了如何决策,如何处理营利组织与非营利实体进行开源协作开发的关系等内容。

Wes McKinney 是仁慈的终身独裁者。

更多“Pandas”相关内容

更多“Pandas”相关内容

新知精选

更多新知精选